metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,3,5,10,12,13,15,20-Octaphenylporphinato)copper(II) 1,1,2,2-tetrachloroethane solvate

Puttaiah Bhyrappa,^a* Karuppaiah Karunanithi^a and Babu Varghese^b

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India, and ^bSophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India Correspondence e-mail: pbhyrappa@hotmail.com

Received 29 November 2007; accepted 2 January 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.046; wR factor = 0.119; data-to-parameter ratio = 13.5.

The title complex, $[Cu(C_{68}H_{44}N_4)] \cdot C_2H_2Cl_4$, exhibits nearly square-planar geometry around the Cu^{II} centre and the macrocyclic ring is almost planar. The porphyrin molecule has an approximate non-crystallographic inversion centre (C_i) , and a non-crystallographic twofold rotation axis (C_2) within the Cu^{II}-porphyrin ring plane. Further, it has non-crystallographic twofold rotation axis and mirror plane (C_s) symmetry perpendicular to the molecular plane. The molecular packing of the complexes and the solvent molecules shows weak intermolecular C-H··· π , C-H···Cl and C- $H \cdots N$ interactions, forming a clathrate-like structure.

Related literature

For related structures, see: Chan et al. (1994); Fleischer et al. (1964). For porphyrin sponges, see: Byrn et al. (1993). For the preparation of the CuTPP(Ph)₄ complex, see: Bhyrappa et al. (2006); Adler et al. (1970). For hydrogen-bonding interactions, see: Desiraju & Steiner (1999); Steiner (2002).

CI₂HC — CHCI₂

Experimental

Crystal data

$[Cu(C_{68}H_{44}N_4)] \cdot C_2H_2Cl_4$	V = 5463.4 (3) Å ³
$M_r = 1148.45$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 18.8891 (5) Å	$\mu = 0.65 \text{ mm}^{-1}$
b = 12.2800 (4) Å	T = 173 (2) K
c = 24.5323 (7) Å	$0.28 \times 0.24 \times 0.20$
$\beta = 106.239 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker 2003) $T_{\min} = 0.840, \ T_{\max} = 0.882$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	712 parameters
wR(F ²) = 0.118	H-atom parameters constrained
S = 1.00 9594 reflections	$\Delta \rho_{\text{max}} = 0.68 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.55 \text{ e } \text{\AA}^{-3}$

0.20 mm

33284 measured reflections

 $R_{\rm int} = 0.042$

9594 independent reflections

6243 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C70−H70···N1 ⁱ	0.98	2.46	3.430 (5)	170
C58-H58···Cl1 ⁱ	0.93	2.91	3.728 (5)	148
$C66-H66\cdots C18^{i}$	0.93	2.83	3.755 (4)	172
C67-H67···Cl4	0.93	2.93	3.424 (4)	115
C34-H34···C6 ⁱⁱ	0.93	2.90	3.790 (5)	161
C35-H35···C11 ⁱⁱ	0.93	2.89	3.821 (5)	175
$C41 - H41 \cdots C19^{ii}$	0.93	2.89	3.725 (5)	149

Symmetry codes: (i) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

This work was supported by funds from the DST and partly from the CSIR, Government of India, to PB. We thank Mr V. Ramkumar for the data collection and the Department of Chemistry, IIT Madras, for the X-RD facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2064).

References

- Adler, A., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443-2445.
- Bhyrappa, P., Sanker, M. & Varghese, B. (2006). Inorg. Chem. 45, 4136-4149. Bruker (2003). XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.
- Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.

Chan, K. S., Zhou, X., Lou, B.-S. & Mak, T. C. W. (1994). J. Chem. Soc. Chem. Commun. pp. 271-272.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 215-219. IUCr Monographs on Crystallography 9. Oxford University Press.

- Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565. Farrugia, L. J. (1999). *J. Appl. Cryst.* **32**, 837–838.

Fleischer, E. B., Miller, C. K. & Webb, L. E. (1964). J. Am. Chem. Soc. 86, 2342-2347.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

Acta Cryst. (2008). E64, m330-m331 [doi:10.1107/S1600536808000147]

(2,3,5,10,12,13,15,20-Octaphenylporphinato)copper(II) 1,1,2,2-tetrachloroethane solvate

P. Bhyrappa, K. Karunanithi and B. Varghese

Comment

The title complex shows a non-crystallographic centre of inversion (C_i) at the Cu^{II} centre, a rotational axis, (C₂) in plane of the porphyrin ring and another C₂ axis and a mirror plane (C_s) perpendicular to the molecular plane. The Cu^{II} centre has nearly square planar geometry (Fig. 1) and it is quite similar to the 5,10,15,20-tetraphenylporphinato copper(II) complex, CuTPP structure (Fleischer *et al.*, 1964). The crystal structure of H₂TPP(Ph)₄ exhibited planar conformation of the porphyrin ring (Chan *et al.*, 1994). In the title complex, shortening of the Cu—N distance (1.961 (2) Å) was observed along the β -pyrrole without substituents relative to the distance (2.060 (2) Å) towards other β -pyrroles with phenyl groups. The average Cu—N bond length was found to be 2.010 (2)Å and it is longer than that observed for the corresponding CuTPP (1.981 (7) Å) (Fleischer *et al.*, 1964) complex. The mean plane deviation of the atoms from the 24-atom core indicates the near planar geometry of the porphyrin ring with a maximum displacement of the core atoms (0.077 (7) Å). The Cu^{II} ion deviates from the 24-atom core by 0.0167 (6) Å. The phenyl groups at the *meso*-positions and β -pyrrole carbons are oriented perpendicular to the mean plane of the porphyrin ring with dihedral angles of 81.1 (3)° and 80.3 (5)°, respectively. The *meso*-carbon-to-phenyl distance (C—C = 1.502 (4) Å) was found to be marginally longer than the β -pyrrole carbon-to-phenyl distance (C—C = 1.494 (4) Å) indicating minimal conjugation of the phenyl rings with the porphyrin π -system.

The molecular packing of a porphyrin array oriented approximately along the *c* axis is shown in Fig.2. The porphyrins form a slipped stack dimers and the porphyrin ring planes are separated by 4.791 Å. The dimers are held together through three symmetry related C—H··· π interactions in the range 2.89 – 2.90 Å (Table 1). These long distances indicate weak C—H··· π interactions (Steiner, 2002). The non-covalently bonded dimeric units are bridged by solvate mediated hydrogen bonding interactions. Each array is interconnected *via* interporphyrin, weak C—H··· π (H66···C18 = 2.83 Å) and porphyrin-solvate hydrogen bonding (H67···Cl4 = 2.93 Å) interactions (Fig.3 and Table 1). The close contact distances are expected for the presence of hydrogen bonding (C—H···Cl and C—H···N) interactions (Desiraju & Steiner, 1999). The porphyrin ring planes in the nearest adjacent array are oriented at a skewed angle of 66.6° to each other. Each such two-dimensional network stack along the unit cell *c* axis by solvate mediated intermolecular interactions. Similar solvate encapsulated porphyrin sponges have been reported in the literature (Byrn *et al.*, 1993).

Experimental

2,3,12,13-Tetraphenyl-5,10,15,20-tetraphenylporphyrin, $H_2TPP(Ph)_4$, was prepared using the variation of the reported procedure (Bhyrappa *et al.*, 2006) by employing excess of super base (40 mmol) and the reaction was completed in 15 h with 92% yield of the $H_2TPP(Ph)_4$ derivative. Its CuTPP(Ph)₄ complex was prepared using a literature method (Adler *et al.*, 1970). The crystals of CuTPP(Ph)₄ were grown by direct diffusion of cyclohexane into 1,1,2,2-tetrachloroethane solution of the porphyrin over a period of three days.

Refinement

All the H atoms were placed in constrained positions (C—H = 0.93- 0.98 Å) and refined using a riding model with $U_{iso}(H)$ = 1.2 or 1.5 times $U_{eq}(C)$ on the parent atom.

Figures

Fig. 1. *ORTEP* plot of the molecular structure of CuTPP(Ph)₄·TCE. Thermal ellipsoids shown at the 50% probability level.

Fig. 2. Molecular packing diagram of the CuTPP(Ph)₄·TCE complex with a view along the unit cell *c* axis. Color scheme: C, H, gray; N, blue; Cl, green; Cu, red. The dotted red lines show the intermolecular C—H··· π (H34···C6, H41···C19, H58···Cl1) and C—H···N (H70···N1) interactions.

Fig. 3. View of the molecular packing of interconnecting two arrays to form a two-dimensional network of the title structure. Color scheme: C, H, gray; N, blue; Cl, green; Cu, red. The dotted red lines show the inter-array hydrogen bonding C—H…Cl (H67…Cl4) and C—H… π (H66…C18) interactions.

(2,3,5,10,12,13,15,20-Octaaphenylporphinato)copper(II) 1,1,2,2-tetrachloroethane solvate

Crystal data	
$[Cu(C_{68}H_{44}N_4)] \cdot C_2H_2Cl_4$	$F_{000} = 2364$
$M_r = 1148.45$	$D_{\rm x} = 1.396 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6786 reflections
a = 18.8891 (5) Å	$\theta = 2.4 - 26.1^{\circ}$
b = 12.2800 (4) Å	$\mu = 0.65 \text{ mm}^{-1}$
c = 24.5323 (7) Å	T = 173 (2) K
$\beta = 106.239 (1)^{\circ}$	Plate, brown

 $V = 5463.4 (3) \text{ Å}^3$ Z = 4 $0.28\times0.24\times0.20~mm$

Data collection

Bruker APEXII CCD area-detector diffractometer	9594 independent reflections
Radiation source: fine-focus sealed tube	6243 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.042$
T = 173(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω and ϕ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker 2003)	$h = -22 \rightarrow 16$
$T_{\min} = 0.840, \ T_{\max} = 0.882$	$k = -14 \rightarrow 14$
33284 measured reflections	<i>l</i> = −29→28

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map			
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites			
$R[F^2 > 2\sigma(F^2)] = 0.046$	H-atom parameters constrained			
$wR(F^2) = 0.119$	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 5.7309P]$ where $P = (F_o^2 + 2F_c^2)/3$			
<i>S</i> = 1.00	$(\Delta/\sigma)_{max} < 0.001$			
9594 reflections	$\Delta \rho_{max} = 0.68 \text{ e} \text{ Å}^{-3}$			
712 parameters	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$			
Primary atom site location: structure-invariant direct methods	Extinction correction: none			

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.64459 (17)	0.5928 (2)	0.62180 (13)	0.0231 (7)
C2	0.57857 (17)	0.6535 (3)	0.62036 (13)	0.0248 (7)
C3	0.54667 (17)	0.6822 (3)	0.56593 (13)	0.0239 (7)

C4	0.59271 (16)	0.6397 (2)	0.53228 (13)	0.0222 (7)
C5	0.58044 (16)	0.6525 (3)	0.47372 (13)	0.0236 (7)
C6	0.62698 (17)	0.6117 (3)	0.44359 (13)	0.0241 (7)
C7	0.61224 (18)	0.6229 (3)	0.38328 (13)	0.0304 (8)
H7	0.5727	0.6599	0.3593	0.036*
C8	0.66522 (18)	0.5709 (3)	0.36775 (14)	0.0319 (8)
H8	0.6695	0.5650	0.3310	0.038*
C9	0.71477 (17)	0.5255 (3)	0.41811 (13)	0.0241 (7)
C10	0.77607 (17)	0.4639 (3)	0.41720 (13)	0.0238 (7)
C11	0.82656 (17)	0.4216 (2)	0.46542 (13)	0.0225 (7)
C12	0.89196 (16)	0.3591 (3)	0.46627 (13)	0.0240 (7)
C13	0.92241 (17)	0.3272 (3)	0.52072 (13)	0.0249 (7)
C14	0.87621 (16)	0.3701 (3)	0.55416 (13)	0.0228 (7)
C15	0.88581 (16)	0.3516 (3)	0.61190 (12)	0.0239 (7)
C16	0.84064 (17)	0.3967 (3)	0.64239 (13)	0.0246 (7)
C17	0.85496 (18)	0.3817 (3)	0.70261 (13)	0.0303 (8)
H17	0.8932	0.3413	0.7261	0.036*
C18	0.80283 (17)	0.4369 (3)	0.71861 (13)	0.0292 (8)
H18	0.7984	0.4419	0.7553	0.035*
C19	0.75556 (17)	0.4864 (3)	0.66928 (12)	0.0247 (7)
C20	0.69373 (17)	0.5476 (3)	0.66969 (13)	0.0231 (7)
C21	0.68139 (17)	0.5585 (3)	0.72752 (13)	0.0288 (8)
C22	0.6517 (2)	0.4722 (3)	0.75038 (15)	0.0429 (10)
H22	0.6351	0.4108	0.7283	0.052*
C23	0.6464 (2)	0.4758 (4)	0.80535 (16)	0.0590 (13)
H23	0.6267	0.4173	0.8203	0.071*
C24	0.6702 (2)	0.5662 (5)	0.83754 (17)	0.0659 (14)
H24	0.6663	0.5692	0.8745	0.079*
C25	0.6998 (2)	0.6523 (4)	0.81635 (17)	0.0604 (13)
H25	0.7160	0.7134	0.8388	0.073*
C26	0.7058 (2)	0.6487 (3)	0.76105 (15)	0.0423 (9)
H26	0.7263	0.7072	0.7467	0.051*
C27	0.54803 (17)	0.6852 (3)	0.66816 (13)	0.0259 (7)
C28	0.5045 (2)	0.6149 (3)	0.68860 (15)	0.0406 (9)
H28	0.4969	0.5443	0.6745	0.049*
C29	0.4719 (2)	0.6481 (3)	0.72986 (16)	0.0483 (10)
H29	0.4425	0.5998	0.7430	0.058*
C30	0.4827 (2)	0.7509 (4)	0.75122 (16)	0.0463 (10)
H30	0.4617	0.7725	0.7795	0.056*
C31	0.5249 (2)	0.8226 (3)	0.73069 (16)	0.0476 (10)
H31	0.5313	0.8935	0.7444	0.057*
C32	0.55786 (19)	0.7895 (3)	0.68968 (14)	0.0372 (9)
H32	0.5870	0.8382	0.6765	0.045*
C33	0.47542 (16)	0.7434 (3)	0.54840 (13)	0.0250 (7)
C34	0.41086 (18)	0.6902 (3)	0.54866 (15)	0.0368 (9)
H34	0.4123	0.6167	0.5580	0.044*
C35	0.34450 (19)	0.7451 (3)	0.53527 (16)	0.0425 (10)
H35	0.3016	0.7083	0.5357	0.051*
C36	0.3414 (2)	0.8534 (3)	0.52138 (16)	0.0439 (10)

Н36	0 2966	0 8902	0.5119	0.053*
C37	0.2900 0.4057(2)	0.0002	0.52158 (16)	0.0411 (9)
H37	0.4041	0.9811	0.5123	0.049*
C38	0 47228 (18)	0.8533 (3)	0.53543 (14)	0.0320(8)
H38	0.5153	0.8907	0.5361	0.0320 (0)
C39	0.51471 (17)	0.0907 0.7143(3)	0.43896(12)	0.0251 (7)
C40	0.31171(17) 0.44515(18)	0.6684(3)	0.42313(14)	0.0251(7) 0.0345(8)
H40	0.4380	0.5985	0.4352	0.041*
C41	0.38612 (19)	0.7259 (3)	0 38938 (16)	0.0449(10)
H41	0 3394	0.6947	0 3791	0.054*
C42	0.3960 (2)	0.8287 (3)	0.37089 (15)	0.031
H42	0.3559	0.8673	0.3485	0.054*
C43	0.3537 0.4649 (2)	0.8745 (3)	0.38543 (14)	0.0401 (9)
H43	0.4719	0.9438	0.3726	0.048*
C44	0.4719 0.52382 (18)	0.8173 (3)	0.41928 (13)	0.0307 (8)
H44	0.5205	0.8486	0.4290	0.037*
C45	0.5705 0.78249 (17)	0.0+00	0.4290	0.037
C45	0.78249(17) 0.7451(2)	0.4373(3) 0.3482(3)	0.33034(13)	0.0274(8)
U40	0.7431 (2)	0.3482 (3)	0.33074 (14)	0.0404 (9)
C47	0.7131 0.7477(2)	0.3043	0.3485	0.048°
U47	0.7477 (2)	0.3239 (4)	0.27023 (10)	0.0524 (11)
C48	0.7224	0.2030	0.2375	0.003°
U48	0.7809 (2)	0.3877 (4)	0.24988 (10)	0.0530 (12)
C40	0.7890	0.3703	0.2134	0.004°
U49	0.8231 (2)	0.4771 (4)	0.27717 (10)	0.0380 (13)
C50	0.8493	0.5212	0.2390 0.22195(15)	0.070°
1150	0.8210 (2)	0.5028 (5)	0.35185 (13)	0.0433 (10)
H50	0.8455	0.3041	0.3501	0.052*
C51	0.92391(17)	0.3209(3)	0.41923(13) 0.20251(14)	0.0267(8)
U52	0.90378 (19)	0.2281 (5)	0.39231 (14)	0.0303 (9)
П32 С52	0.8703	0.1044	0.4010	0.044
C55	0.9393 (2)	0.1929 (3)	0.35218 (15)	0.0483 (10)
H53	0.9266	0.1257	0.3347	0.058*
C54	0.9907 (2)	0.2558 (4)	0.33792 (16)	0.0497 (11)
H54	1.0122	0.2327	0.3101	0.060*
C55	1.0106 (2)	0.3341 (4)	0.36498 (18)	0.0538 (11)
H55	1.0463	0.3968	0.3559	0.065*
C56	0.9775 (2)	0.3896 (3)	0.40592 (16)	0.0428 (10)
H56	0.9914	0.4557	0.4243	0.051*
C57	0.99055 (17)	0.2602 (3)	0.53830 (12)	0.0257(7)
C58	0.98709 (19)	0.1484 (3)	0.54570(14)	0.0337(8)
H58	0.9415	0.1150	0.5406	0.040*
C59	1.0503 (2)	0.0863 (3)	0.56045 (15)	0.0459 (10)
H59	1.0472	0.0116	0.5656	0.055*
C60	1.1178 (2)	0.1343 (4)	0.56752 (16)	0.0513 (11)
H6U	1.1604	0.0924	0.5782	0.062*
C61	1.1226 (2)	0.2441 (4)	0.55881 (16)	0.0465 (10)
H61	1.1683	0.2764	0.5629	0.056*
C62	1.05912 (18)	0.3068 (3)	0.54386 (14)	0.0349 (9)
H62	1.0625	0.3810	0.5375	0.042*

C63	0.94523 (17)	0.2782 (3)	0.64525 (13)	0.0279 (8)
C64	0.9268 (2)	0.1744 (3)	0.65906 (14)	0.0379 (9)
H64	0.8782	0.1506	0.6465	0.045*
C65	0.9809 (3)	0.1058 (3)	0.69174 (16)	0.0529 (11)
H65	0.9683	0.0365	0.7012	0.064*
C66	1.0524 (3)	0.1401 (4)	0.70990 (16)	0.0569 (12)
H66	1.0886	0.0937	0.7312	0.068*
C67	1.0710 (2)	0.2428 (4)	0.69686 (15)	0.0497 (11)
H67	1.1197	0.2659	0.7093	0.060*
C68	1.01747 (18)	0.3120 (3)	0.66534 (14)	0.0375 (9)
H68	1.0303	0.3823	0.6575	0.045*
N1	0.65247 (13)	0.5851 (2)	0.56727 (10)	0.0215 (6)
N2	0.69068 (13)	0.5520(2)	0.46464 (10)	0.0221 (6)
N3	0.81909 (13)	0.4296 (2)	0.51955 (10)	0.0214 (6)
N4	0.77967 (13)	0.4618 (2)	0.62234 (10)	0.0225 (6)
Cu1	0.735277 (19)	0.50618 (3)	0.543368 (15)	0.02048 (11)
C69	1.2045 (2)	0.3335 (4)	0.94084 (18)	0.0544 (11)
H69	1.1761	0.2674	0.9422	0.065*
C70	1.2450 (2)	0.3183 (4)	0.89730 (19)	0.0594 (12)
H70	1.2792	0.2574	0.9098	0.071*
Cl1	1.14390 (8)	0.44408 (13)	0.92542 (6)	0.0953 (5)
Cl2	1.27110 (6)	0.35061 (10)	1.00777 (4)	0.0613 (3)
C13	1.29698 (8)	0.43045 (13)	0.88925 (6)	0.0882 (4)
Cl4	1.17999 (7)	0.27836 (13)	0.83291 (5)	0.0837 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0263 (17)	0.0209 (18)	0.0243 (18)	-0.0048 (14)	0.0110 (14)	-0.0054 (14)
C2	0.0265 (17)	0.0230 (18)	0.0284 (18)	-0.0018 (15)	0.0137 (14)	-0.0052 (14)
C3	0.0261 (17)	0.0186 (17)	0.0294 (18)	-0.0026 (14)	0.0116 (14)	-0.0026 (14)
C4	0.0230 (17)	0.0185 (17)	0.0265 (18)	-0.0039 (14)	0.0094 (14)	-0.0025 (14)
C5	0.0241 (17)	0.0211 (18)	0.0263 (18)	-0.0002 (14)	0.0083 (14)	-0.0007 (14)
C6	0.0263 (17)	0.0204 (18)	0.0259 (18)	-0.0002 (14)	0.0080 (14)	0.0007 (14)
C7	0.0329 (19)	0.036 (2)	0.0224 (18)	0.0102 (16)	0.0082 (15)	0.0037 (15)
C8	0.037 (2)	0.039 (2)	0.0223 (18)	0.0076 (17)	0.0124 (15)	0.0033 (16)
C9	0.0285 (18)	0.0235 (19)	0.0219 (17)	0.0007 (14)	0.0097 (14)	-0.0010 (14)
C10	0.0279 (18)	0.0227 (18)	0.0232 (17)	-0.0011 (14)	0.0112 (14)	-0.0011 (14)
C11	0.0261 (17)	0.0202 (18)	0.0242 (17)	-0.0038 (14)	0.0121 (14)	-0.0005 (14)
C12	0.0238 (17)	0.0251 (18)	0.0249 (18)	-0.0011 (14)	0.0096 (13)	-0.0017 (14)
C13	0.0261 (17)	0.0258 (19)	0.0267 (18)	-0.0005 (14)	0.0135 (14)	-0.0015 (15)
C14	0.0215 (16)	0.0216 (18)	0.0250 (17)	-0.0015 (14)	0.0061 (13)	-0.0016 (14)
C15	0.0234 (17)	0.0266 (19)	0.0219 (17)	-0.0007 (14)	0.0067 (13)	-0.0020 (14)
C16	0.0248 (17)	0.0276 (19)	0.0225 (17)	-0.0007 (15)	0.0084 (14)	-0.0013 (14)
C17	0.0311 (19)	0.039 (2)	0.0205 (17)	0.0071 (16)	0.0070 (14)	0.0022 (15)
C18	0.0317 (19)	0.040 (2)	0.0175 (17)	0.0025 (16)	0.0090 (14)	0.0004 (15)
C19	0.0270 (17)	0.0277 (19)	0.0210 (16)	-0.0028 (15)	0.0093 (13)	-0.0051 (14)
C20	0.0267 (18)	0.0221 (18)	0.0233 (17)	-0.0053 (14)	0.0114 (14)	-0.0066 (14)

C21	0.0262 (18)	0.041 (2)	0.0190 (17)	0.0105 (16)	0.0064 (14)	-0.0046 (16)
C22	0.042 (2)	0.060 (3)	0.031 (2)	-0.006(2)	0.0174 (17)	-0.0002 (19)
C23	0.050 (3)	0.102 (4)	0.031 (2)	0.000 (3)	0.0195 (19)	0.013 (2)
C24	0.054 (3)	0.124 (5)	0.022 (2)	0.021 (3)	0.015 (2)	-0.004 (3)
C25	0.067 (3)	0.078 (4)	0.030 (2)	0.015 (3)	0.005 (2)	-0.026 (2)
C26	0.046 (2)	0.045 (2)	0.033 (2)	0.0071 (19)	0.0071 (17)	-0.0125 (18)
C27	0.0250 (17)	0.029 (2)	0.0247 (17)	0.0053 (15)	0.0093 (14)	-0.0014 (15)
C28	0.046 (2)	0.038 (2)	0.045 (2)	-0.0014 (19)	0.0259 (19)	-0.0092 (18)
C29	0.050 (2)	0.055 (3)	0.052 (3)	-0.001 (2)	0.034 (2)	0.001 (2)
C30	0.047 (2)	0.062 (3)	0.036 (2)	0.019 (2)	0.0207 (19)	-0.001 (2)
C31	0.062 (3)	0.041 (2)	0.045 (2)	0.009 (2)	0.023 (2)	-0.013 (2)
C32	0.043 (2)	0.037 (2)	0.036 (2)	-0.0014 (18)	0.0178 (17)	-0.0053 (17)
C33	0.0254 (17)	0.0271 (19)	0.0246 (17)	0.0019 (15)	0.0103 (14)	-0.0051 (15)
C34	0.033 (2)	0.027 (2)	0.052 (2)	-0.0004 (17)	0.0166 (17)	0.0025 (17)
C35	0.027 (2)	0.041 (2)	0.061 (3)	-0.0019 (18)	0.0156 (18)	0.005 (2)
C36	0.030 (2)	0.041 (2)	0.062 (3)	0.0104 (19)	0.0158 (18)	0.002 (2)
C37	0.041 (2)	0.026 (2)	0.058 (3)	0.0073 (18)	0.0156 (18)	0.0039 (18)
C38	0.0309 (19)	0.026 (2)	0.042 (2)	-0.0018 (16)	0.0156 (16)	-0.0013 (16)
C39	0.0279 (18)	0.0271 (19)	0.0211 (17)	0.0035 (15)	0.0083 (13)	-0.0036 (14)
C40	0.032 (2)	0.034 (2)	0.037 (2)	-0.0023 (17)	0.0088 (16)	-0.0093 (17)
C41	0.026 (2)	0.052 (3)	0.050 (2)	0.0013 (19)	-0.0010 (17)	-0.019 (2)
C42	0.038 (2)	0.053 (3)	0.038 (2)	0.023 (2)	-0.0027 (17)	-0.006 (2)
C43	0.050 (2)	0.035 (2)	0.035 (2)	0.0145 (19)	0.0111 (18)	0.0052 (17)
C44	0.0305 (19)	0.033 (2)	0.0285 (18)	0.0026 (16)	0.0085 (15)	-0.0001 (16)
C45	0.0266 (18)	0.033 (2)	0.0224 (17)	0.0071 (16)	0.0068 (14)	-0.0018 (15)
C46	0.050 (2)	0.042 (2)	0.031 (2)	0.0024 (19)	0.0141 (17)	-0.0029 (18)
C47	0.058 (3)	0.059 (3)	0.036 (2)	0.006 (2)	0.007 (2)	-0.017 (2)
C48	0.048 (2)	0.090 (4)	0.026 (2)	0.012 (2)	0.0156 (19)	-0.010 (2)
C49	0.056 (3)	0.093 (4)	0.034 (2)	-0.013 (3)	0.026 (2)	-0.003 (2)
C50	0.043 (2)	0.059 (3)	0.032 (2)	-0.012 (2)	0.0178 (17)	-0.005 (2)
C51	0.0292 (18)	0.030 (2)	0.0234 (17)	0.0087 (15)	0.0108 (14)	0.0010 (15)
C52	0.040 (2)	0.041 (2)	0.031 (2)	0.0006 (18)	0.0164 (16)	-0.0023 (17)
C53	0.059 (3)	0.053 (3)	0.036 (2)	0.008 (2)	0.017 (2)	-0.014 (2)
C54	0.052 (3)	0.067 (3)	0.038 (2)	0.021 (2)	0.0258 (19)	-0.001(2)
C55	0.052 (3)	0.063 (3)	0.064 (3)	0.006 (2)	0.043 (2)	0.008 (2)
C56	0.050 (2)	0.039 (2)	0.051 (2)	0.0011 (19)	0.032 (2)	-0.0015 (19)
C57	0.0291(18)	0.032(2)	0.001(2)	0.0046 (16)	0.002(13)	-0.0019(14)
C58	0.027(2)	0.032(2)	0.033(2)	0.0061 (17)	0.0148 (16)	-0.0009(16)
C59	0.061(3)	0.036(2)	0.022(2)	0.018 (2)	0.016(2)	0.0043 (18)
C60	0.001(2)	0.050(2)	0.046(2)	0.030(2)	0.0005(19)	0.000(2)
C61	0.027(2)	0.064(3)	0.049(2)	0.008(2)	0.0123 (17)	-0.007(2)
C62	0.027(2) 0.034(2)	0.038(2)	0.019(2)	0.000(2)	0.0125 (17)	-0.0065(17)
C63	0.031(2)	0.030(2)	0.020(2)	0.0019(17)	0.0118(14)	0.0005(15)
C64	0.0302(1)	0.038(2)	0.0225(17)	0.0000 (10) 0.0074 (18)	0.0202(17)	0.0008(18)
C65	0.019(2)	0.030(2)	0.030(2)	0.0071(10)	0.0202(17)	0.0020(10)
C66	0.063(3)	0.074(3)	0.034(2)	0.023(2)	0.033(2)	0.012(2)
C67	0.005(3)	0.077(3)	0.037(2)	0.041(3)	0.017(2)	0.012(2)
C68	0.037(2)	0.072(3)	0.033(2)	0.010(2)	0.0084 (16)	0.002(2)
N1	0.03 + (2) 0.0235 (14)	0.070(2)	0.0300(17) 0.0214(14)	-0.0013(12)	0.000+(10)	-0.0012(11)
1 1 1	0.0233 (14)	0.0203 (13)	0.0214 (14)	0.0013(12)	0.0074(11)	0.0012 (11)

N2	0.0251 (14)	0.0216 (14)	0.0221 (14)	0.0019 (12)	0.0105 (11)	0.0003 (12)	
N3	0.0236 (14)	0.0231 (15)	0.0186 (14)	-0.0007 (12)	0.0077 (11)	-0.0002 (11)	
N4	0.0249 (14)	0.0227 (15)	0.0212 (14)	-0.0010 (12)	0.0087 (11)	-0.0028 (11)	
Cu1	0.0220 (2)	0.0212 (2)	0.01977 (19)	0.00008 (17)	0.00838 (14)	-0.00128 (16)	
C69	0.045 (2)	0.050 (3)	0.070 (3)	0.008 (2)	0.019 (2)	0.009 (2)	
C70	0.051 (3)	0.050 (3)	0.080 (3)	0.016 (2)	0.023 (2)	0.009 (2)	
Cl1	0.0875 (10)	0.1020 (11)	0.0990 (11)	0.0603 (9)	0.0303 (8)	0.0086 (9)	
Cl2	0.0466 (6)	0.0845 (9)	0.0481 (6)	-0.0065 (6)	0.0054 (5)	0.0052 (6)	
C13	0.0867 (10)	0.0987 (11)	0.0909 (10)	-0.0276 (8)	0.0437 (8)	0.0083 (8)	
Cl4	0.0745 (8)	0.1147 (12)	0.0581 (8)	0.0044 (8)	0.0122 (6)	-0.0277 (7)	
Geometric pa	rameters (Å, °)						
C1—N1		1.390 (4)	C37—	-C38	1.37	79 (5)	
C1-C20		1 393 (4)	C37—	-H37	0.93		
C1-C2		1.445 (4)	C38—	-H38	0.93	0.93	
C2—C3		1.349 (4)	C39—	-C44	1.38	31 (5)	
C2—C27		1.496 (4)	C39—	-C40	1.38	32 (4)	
C3—C4		1.453 (4)	C40—	-C41	1.383 (5)		
C3—C33		1.496 (4)	C40—	-H40	0.93		
C4—N1		1.385 (4)	C41—	-C42	1.37	(1)	
C4—C5		1.398 (4)	C41—	-H41	0.93		
C5—C6		1.390 (4)	C42—	-C43	1.37	70 (5)	
C5—C39		1.501 (4)	C42—	-H42	0.93		
C6—N2		1.380 (4)	C43—	-C44	1.38	31 (5)	
C6—C7		1.434 (4)	C43—	-H43	0.93	5	
С7—С8		1.329 (4)	C44—	-H44	0.93	5	
С7—Н7		0.93	C45—	-C50	1.37	2 (5)	
С8—С9		1.438 (4)	C45—	-C46	1.37	78 (5)	
С8—Н8		0.93	C46—	-C47	1.38	34 (5)	
C9—N2		1.381 (4)	C46—	-H46	0.93	5	
C9—C10		1.388 (4)	C47—	-C48	1.35	59 (6)	
C10-C11		1.395 (4)	C47—	-H47	0.93	}	
C10—C45		1.506 (4)	C48—	-C49	1.36	66 (6)	
C11—N3		1.378 (4)	C48—	-H48	0.93	;	
C11—C12		1.450 (4)	C49—	-C50	1.39	00 (5)	
C12—C13		1.356 (4)	C49—	-H49	0.93	;	
C12—C51		1.497 (4)	C50—	-H50	0.93	;	
C13—C14		1.453 (4)	C51—	-C52	1.37	75 (5)	
C13—C57		1.486 (4)	C51—	-C56	1.38	32 (5)	
C14—N3		1.381 (4)	С52—	-C53	1.38	35 (5)	
C14—C15		1.396 (4)	C52—	-H52	0.93	;	
C15—C16		1.397 (4)	С53—	-C54	1.36	60 (6)	
C15—C63		1.492 (4)	C53—	-H53	0.93	;	
C16—N4		1.375 (4)	C54—	-C55	1.37	78 (6)	
C16—C17		1.437 (4)	C54—	-H54	0.93	;	
C17—C18		1.341 (4)	C55—	-C56	1.39	94 (5)	
С17—Н17		0.93	C55—	-H55	0.93	;	
C18—C19		1.424 (4)	C56—	-H56	0.93	;	

C18—H18	0.93	C57—C62	1.387 (4)
C19—N4	1.385 (4)	C57—C58	1.389 (5)
C19—C20	1.392 (4)	C58—C59	1.377 (5)
C20—C21	1.507 (4)	C58—H58	0.93
C21—C26	1.380 (5)	C59—C60	1.371 (6)
C21—C22	1.388 (5)	С59—Н59	0.93
C22—C23	1.381 (5)	C60—C61	1.372 (6)
C22—H22	0.93	С60—Н60	0.93
C23—C24	1.363 (7)	C61—C62	1.385 (5)
С23—Н23	0.93	С61—Н61	0.93
C24—C25	1.365 (7)	С62—Н62	0.93
C24—H24	0.93	C63—C68	1.379 (5)
C25—C26	1.393 (5)	C63—C64	1.388 (5)
C25—H25	0.93	C64—C65	1.392 (5)
C26—H26	0.93	С64—Н64	0.93
C27—C32	1.378 (5)	C65—C66	1.365 (6)
C27—C28	1.379 (5)	С65—Н65	0.93
C28—C29	1.385 (5)	C66—C67	1.371 (6)
C28—H28	0.93	С66—Н66	0.93
C29—C30	1.361 (5)	C67—C68	1.380 (5)
С29—Н29	0.93	С67—Н67	0.93
C30—C31	1.374 (5)	С68—Н68	0.93
С30—Н30	0.93	N1—Cu1	2.060 (2)
C31—C32	1.384 (5)	N2—Cu1	1.961 (2)
C31—H31	0.93	N3—Cu1	2.061 (2)
С32—Н32	0.93	N4—Cu1	1.961 (2)
C33—C38	1.384 (4)	C69—C70	1.488 (6)
C33—C34	1.385 (4)	C69—C11	1.748 (4)
C34—C35	1.379 (5)	C69—Cl2	1.779 (4)
С34—Н34	0.93	С69—Н69	0.98
C35—C36	1.371 (5)	C70—C13	1.734 (5)
С35—Н35	0.93	C70—Cl4	1.777 (5)
C36—C37	1.383 (5)	С70—Н70	0.98
С36—Н36	0.93		
N1—C1—C20	124.0 (3)	C39—C40—C41	120.2 (4)
N1—C1—C2	109.6 (3)	С39—С40—Н40	119.9
C20—C1—C2	126.4 (3)	C41—C40—H40	119.9
C3—C2—C1	107.6 (3)	C42—C41—C40	120.5 (3)
C3—C2—C27	123.0 (3)	C42—C41—H41	119.8
C1—C2—C27	129.4 (3)	C40—C41—H41	119.8
C2—C3—C4	107.2 (3)	C43—C42—C41	119.9 (3)
C2—C3—C33	122.2 (3)	C43—C42—H42	120.1
C4—C3—C33	130.6 (3)	C41—C42—H42	120.1
N1—C4—C5	124.3 (3)	C42—C43—C44	119.7 (4)
N1—C4—C3	109.6 (3)	C42—C43—H43	120.2
C5—C4—C3	126.1 (3)	C44—C43—H43	120.2
C6—C5—C4	123.9 (3)	C43—C44—C39	121.2 (3)
C6—C5—C39	115.2 (3)	C43—C44—H44	119.4
C4—C5—C39	120.9 (3)	C39—C44—H44	119.4

N2 C6 C5	127.4(2)	C50 C45 C46	110.4(2)
$N_2 - C_0 - C_3$	127.4(3) 109.5(3)	C_{50} C_{45} C_{46} C_{50} C_{45} C_{10}	119.4(3) 121.7(3)
12 - 20 - 27	109.5(3)	$C_{46} - C_{45} - C_{10}$	121.7(3) 118.8(3)
$C_{3} = C_{0} = C_{1}^{2}$	123.0(3) 107.8(3)	$C_{40} = C_{45} = C_{10}$	110.0(3)
C8-C7-H7	107.8 (5)	$C_{45} - C_{46} - H_{46}$	120.2 (4)
$C_{0} = C_{1} = H_{1}$	120.1	$C_{43} = C_{40} = 1140$	119.9
$C_{0} = C_{1} = C_{1}$	107.6 (3)	$C_{47} = C_{40} = 1140$	119.9
$C_7 = C_8 = C_7$	107.0 (5)	$C_{48} = C_{47} = C_{40}$	120.4 (4)
$C_{1} = C_{2} = C_{1}$	126.2	$C_{46} = C_{47} = H_{47}$	119.8
$N_{2} = C_{3} = C_{10}$	120.2 127.7(3)	$C_{40} = C_{47} = C_{48} = C_{49}$	119.8 119.7 (4)
$N_2 = C_3 = C_{10}$	127.7(3) 100.4(2)	$C_{47} = C_{48} = C_{49}$	119.7 (4)
$N_2 = C_3 = C_8$	109.4(3)	$C_{47} - C_{48} - H_{48}$	120.2
C10 - C9 - C8	122.9(3)	C49 - C48 - H48	120.2
$C_{9} = C_{10} = C_{11}$	124.4 (3)	$C_{48} = C_{49} = C_{50}$	120.6 (4)
$C_{9} = C_{10} = C_{43}$	115.0 (3)	C48-C49-H49	119.7
C11 - C10 - C43	120.5 (3)	C30-C49-H49	119.7
N3-C11-C10	124.1 (3)	C45 - C50 - C49	119.7 (4)
N3-C11-C12	109.9 (3)	C45—C50—H50	120.2
C10-C11-C12	125.9 (3)	C49—C50—H50	120.2
C13—C12—C11	107.0 (3)	C52—C51—C56	118.7 (3)
C13-C12-C51	122.1 (3)	C52—C51—C12	120.0 (3)
C11-C12-C51	130.9 (3)	C56—C51—C12	121.0 (3)
C12—C13—C14	107.2 (3)	C51—C52—C53	120.9 (3)
C12—C13—C57	122.7 (3)	С51—С52—Н52	119.6
C14—C13—C57	130.2 (3)	С53—С52—Н52	119.6
N3—C14—C15	124.6 (3)	C54—C53—C52	120.5 (4)
N3—C14—C13	109.5 (3)	С54—С53—Н53	119.7
C15—C14—C13	125.8 (3)	С52—С53—Н53	119.7
C14—C15—C16	123.6 (3)	C53—C54—C55	119.5 (3)
C14—C15—C63	121.3 (3)	C53—C54—H54	120.3
C16—C15—C63	115.1 (3)	C55—C54—H54	120.3
N4—C16—C15	127.9 (3)	C54—C55—C56	120.3 (4)
N4—C16—C17	109.9 (3)	С54—С55—Н55	119.9
C15—C16—C17	122.1 (3)	С56—С55—Н55	119.9
C18—C17—C16	107.1 (3)	C51—C56—C55	120.1 (4)
C18—C17—H17	126.5	C51—C56—H56	119.9
C16—C17—H17	126.5	С55—С56—Н56	119.9
C17—C18—C19	107.7 (3)	C62—C57—C58	118.1 (3)
C17-C18-H18	126.1	C62—C57—C13	120.6 (3)
C19-C18-H18	126.1	C58—C57—C13	121.1 (3)
N4—C19—C20	126.6 (3)	C59—C58—C57	120.8 (3)
N4—C19—C18	109.9 (3)	С59—С58—Н58	119.6
C20-C19-C18	123.6 (3)	С57—С58—Н58	119.6
C19—C20—C1	124.9 (3)	C60—C59—C58	120.1 (4)
C19—C20—C21	113.9 (3)	С60—С59—Н59	119.9
C1—C20—C21	121.1 (3)	С58—С59—Н59	119.9
C26—C21—C22	118.5 (3)	C59—C60—C61	120.2 (4)
C26—C21—C20	121.2 (3)	С59—С60—Н60	119.9
C22—C21—C20	120.0 (3)	С61—С60—Н60	119.9
C23—C22—C21	121.2 (4)	C60—C61—C62	119.9 (4)

C23—C22—H22	119.4	C60—C61—H61	120.1
C21—C22—H22	119.4	С62—С61—Н61	120.1
C24—C23—C22	119.3 (4)	C61—C62—C57	120.8 (4)
С24—С23—Н23	120.3	С61—С62—Н62	119.6
С22—С23—Н23	120.3	С57—С62—Н62	119.6
C23—C24—C25	120.9 (4)	C68—C63—C64	118.7 (3)
C23—C24—H24	119.5	C68—C63—C15	122.1 (3)
C25—C24—H24	119.5	C64—C63—C15	119.1 (3)
C24—C25—C26	120.0 (4)	C63—C64—C65	120.2 (4)
С24—С25—Н25	120.0	С63—С64—Н64	119.9
С26—С25—Н25	120.0	С65—С64—Н64	119.9
C21—C26—C25	120.1 (4)	C66—C65—C64	120.1 (4)
C21—C26—H26	120.0	С66—С65—Н65	120.0
С25—С26—Н26	120.0	С64—С65—Н65	120.0
C32—C27—C28	118.2 (3)	C65—C66—C67	120.2 (4)
C32—C27—C2	120.1 (3)	С65—С66—Н66	119.9
C28—C27—C2	121.5 (3)	С67—С66—Н66	119.9
C27—C28—C29	120.9 (4)	C66—C67—C68	120.2 (4)
C27—C28—H28	119.5	С66—С67—Н67	119.9
C29—C28—H28	119.5	С68—С67—Н67	119.9
C30—C29—C28	120.3 (4)	C63—C68—C67	120.7 (4)
С30—С29—Н29	119.8	С63—С68—Н68	119.6
С28—С29—Н29	119.8	С67—С68—Н68	119.6
C29—C30—C31	119.5 (3)	C4—N1—C1	106.0 (2)
С29—С30—Н30	120.2	C4—N1—Cu1	127.11 (19)
С31—С30—Н30	120.2	C1—N1—Cu1	126.9 (2)
C30—C31—C32	120.2 (4)	C6—N2—C9	105.7 (2)
C30—C31—H31	119.9	C6—N2—Cu1	127.60 (19)
С32—С31—Н31	119.9	C9—N2—Cu1	126.6 (2)
C27—C32—C31	120.7 (3)	C11—N3—C14	106.4 (2)
С27—С32—Н32	119.6	C11—N3—Cu1	126.84 (19)
С31—С32—Н32	119.6	C14—N3—Cu1	126.67 (19)
C38—C33—C34	118.6 (3)	C16—N4—C19	105.5 (2)
C38—C33—C3	122.2 (3)	C16—N4—Cu1	126.8 (2)
C34—C33—C3	119.0 (3)	C19—N4—Cu1	127.7 (2)
C35—C34—C33	120.8 (3)	N4—Cu1—N2	179.44 (11)
C35—C34—H34	119.6	N4—Cu1—N1	89.91 (10)
С33—С34—Н34	119.6	N2—Cu1—N1	89.67 (10)
C36—C35—C34	120.4 (3)	N4—Cu1—N3	90.18 (10)
С36—С35—Н35	119.8	N2—Cu1—N3	90.23 (10)
C34—C35—H35	119.8	N1—Cu1—N3	179.05 (10)
C35—C36—C37	119.3 (3)	C70—C69—Cl1	112.3 (3)
С35—С36—Н36	120.4	C70—C69—C12	107.8 (3)
С37—С36—Н36	120.4	Cl1—C69—Cl2	111.0 (2)
C38—C37—C36	120.5 (3)	С70—С69—Н69	108.6
С38—С37—Н37	119.7	С11—С69—Н69	108.6
С36—С37—Н37	119.7	Cl2—C69—H69	108.6
C37—C38—C33	120.4 (3)	C69—C70—Cl3	113.8 (3)
C37—C38—H38	119.8	C69—C70—Cl4	107.9 (3)

С33—С38—Н38	119.8	Cl3—C70—Cl4	113.0 (3)
C44—C39—C40	118.5 (3)	С69—С70—Н70	107.3
C44—C39—C5	119.8 (3)	Cl3—C70—H70	107.3
C40—C39—C5	121.6 (3)	Cl4—C70—H70	107.3
N1—C1—C2—C3	0.1 (4)	C5—C39—C40—C41	-177.7 (3)
C20-C1-C2-C3	-179.7 (3)	C39—C40—C41—C42	0.5 (5)
N1—C1—C2—C27	-178.4 (3)	C40—C41—C42—C43	0.6 (5)
C20—C1—C2—C27	1.9 (5)	C41—C42—C43—C44	-0.9 (5)
C1—C2—C3—C4	-0.1 (4)	C42—C43—C44—C39	-0.1 (5)
C27—C2—C3—C4	178.5 (3)	C40—C39—C44—C43	1.2 (5)
C1—C2—C3—C33	178.0 (3)	C5-C39-C44-C43	177.5 (3)
C27—C2—C3—C33	-3.4 (5)	C9—C10—C45—C50	91.7 (4)
C2—C3—C4—N1	0.1 (4)	C11-C10-C45-C50	-92.5 (4)
C33—C3—C4—N1	-177.8 (3)	C9—C10—C45—C46	-84.5 (4)
C2—C3—C4—C5	-178.9 (3)	C11-C10-C45-C46	91.3 (4)
C33—C3—C4—C5	3.1 (5)	C50—C45—C46—C47	1.3 (5)
N1-C4-C5-C6	-0.1 (5)	C10-C45-C46-C47	177.6 (3)
C3—C4—C5—C6	178.8 (3)	C45—C46—C47—C48	-0.1 (6)
N1-C4-C5-C39	-179.1 (3)	C46—C47—C48—C49	-0.9 (6)
C3—C4—C5—C39	-0.3 (5)	C47—C48—C49—C50	0.7 (7)
C4—C5—C6—N2	1.2 (5)	C46—C45—C50—C49	-1.5 (6)
C39—C5—C6—N2	-179.7 (3)	C10-C45-C50-C49	-177.7 (3)
C4—C5—C6—C7	178.1 (3)	C48—C49—C50—C45	0.5 (6)
C39—C5—C6—C7	-2.8 (5)	C13—C12—C51—C52	84.5 (4)
N2—C6—C7—C8	0.3 (4)	C11—C12—C51—C52	-93.1 (4)
C5—C6—C7—C8	-177.1 (3)	C13—C12—C51—C56	-88.7 (4)
C6—C7—C8—C9	0.1 (4)	C11—C12—C51—C56	93.7 (4)
C7—C8—C9—N2	-0.4 (4)	C56—C51—C52—C53	-1.3 (5)
C7—C8—C9—C10	178.9 (3)	C12—C51—C52—C53	-174.7 (3)
N2-C9-C10-C11	-3.0 (5)	C51—C52—C53—C54	-0.4 (6)
C8—C9—C10—C11	177.8 (3)	C52—C53—C54—C55	1.6 (6)
N2-C9-C10-C45	172.6 (3)	C53—C54—C55—C56	-1.1 (6)
C8—C9—C10—C45	-6.5 (5)	C52—C51—C56—C55	1.7 (5)
C9—C10—C11—N3	4.5 (5)	C12—C51—C56—C55	175.0 (3)
C45—C10—C11—N3	-170.9 (3)	C54—C55—C56—C51	-0.5 (6)
C9—C10—C11—C12	-178.6 (3)	C12—C13—C57—C62	76.4 (4)
C45—C10—C11—C12	6.0 (5)	C14—C13—C57—C62	-103.9 (4)
N3-C11-C12-C13	1.6 (4)	C12—C13—C57—C58	-99.0 (4)
C10-C11-C12-C13	-175.6 (3)	C14—C13—C57—C58	80.7 (4)
N3—C11—C12—C51	179.5 (3)	C62—C57—C58—C59	2.6 (5)
C10-C11-C12-C51	2.3 (5)	C13—C57—C58—C59	178.2 (3)
C11—C12—C13—C14	-0.2 (4)	C57—C58—C59—C60	-0.6 (5)
C51—C12—C13—C14	-178.3 (3)	C58—C59—C60—C61	-1.3 (6)
C11—C12—C13—C57	179.5 (3)	C59—C60—C61—C62	1.2 (6)
C51—C12—C13—C57	1.5 (5)	C60—C61—C62—C57	0.9 (5)
C12-C13-C14-N3	-1.3 (4)	C58—C57—C62—C61	-2.8 (5)
C57—C13—C14—N3	179.0 (3)	C13—C57—C62—C61	-178.3 (3)
C12—C13—C14—C15	176.6 (3)	C14—C15—C63—C68	79.8 (4)
C57—C13—C14—C15	-3.2 (6)	C16—C15—C63—C68	-101.7 (4)

N3-C14-C15-C16	-3.8 (5)	C14—C15—C63—C64	-103.5 (4)
C13-C14-C15-C16	178.6 (3)	C16—C15—C63—C64	74.9 (4)
N3—C14—C15—C63	174.5 (3)	C68—C63—C64—C65	-1.1 (5)
C13—C14—C15—C63	-3.0 (5)	C15—C63—C64—C65	-177.9 (3)
C14—C15—C16—N4	2.2 (5)	C63—C64—C65—C66	-0.6 (5)
C63—C15—C16—N4	-176.2 (3)	C64—C65—C66—C67	1.1 (6)
C14—C15—C16—C17	-175.8 (3)	C65—C66—C67—C68	0.0 (6)
C63—C15—C16—C17	5.7 (5)	C64—C63—C68—C67	2.3 (5)
N4—C16—C17—C18	0.3 (4)	C15—C63—C68—C67	178.9 (3)
C15—C16—C17—C18	178.7 (3)	C66—C67—C68—C63	-1.8 (5)
C16—C17—C18—C19	0.2 (4)	C5—C4—N1—C1	179.0 (3)
C17—C18—C19—N4	-0.6 (4)	C3—C4—N1—C1	-0.1 (3)
C17—C18—C19—C20	178.0 (3)	C5—C4—N1—Cu1	-1.9 (4)
N4—C19—C20—C1	1.4 (5)	C3—C4—N1—Cu1	179.00 (19)
C18—C19—C20—C1	-176.9 (3)	C20—C1—N1—C4	179.8 (3)
N4—C19—C20—C21	179.0 (3)	C2-C1-N1-C4	0.0 (3)
C18—C19—C20—C21	0.7 (5)	C20—C1—N1—Cu1	0.7 (4)
N1-C1-C20-C19	-2.0(5)	C2-C1-N1-Cu1	-179.1(2)
$C_2 - C_1 - C_2 - C_{19}$	177.7 (3)	C5-C6-N2-C9	176.7 (3)
N1 - C1 - C20 - C21	-1795(3)	C7-C6-N2-C9	-0.6(3)
$C_2 - C_1 - C_2 $	0.2.(5)	C_{5} — C_{6} — N_{2} — C_{11}	0.0(5)
C_{19} C_{20} C_{21} C_{26}	96 4 (4)	C7-C6-N2-Cu1	-1773(2)
C1 - C20 - C21 - C26	-85.9(4)	$C_{10} - C_{9} - N_{2} - C_{6}$	-178.6(3)
C19 - C20 - C21 - C22	-77.0(4)	C8 - C9 - N2 - C6	0.6(3)
C1 - C20 - C21 - C22	100 7 (4)	C10-C9-N2-Cu1	-1.9(5)
$C_{26} - C_{21} - C_{22} - C_{23}$	0.1(5)	C8-C9-N2-Cu1	177 4 (2)
C_{20} C_{21} C_{22} C_{23}	173 7 (3)	C10-C11-N3-C14	1749(3)
$C_{20} = C_{21} = C_{22} = C_{23} = C_{24}$	0.5 (6)	C_{12} C_{11} N_{3} C_{14}	-24(3)
$C_{22}^{22} = C_{23}^{22} = C_{24}^{22} = C_{25}^{22}$	-0.6(7)	C10-C11-N3-Cu1	-1.3(4)
$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	0.0(7)	C_{12} C_{11} N_{3} C_{11}	-178.6(2)
$C_{22}^{22} = C_{21}^{21} = C_{26}^{22} = C_{25}^{22}$	-0.6(5)	$C_{12} = C_{14} = N_3 = C_{11}$	-175.6(3)
$C_{22} = C_{21} = C_{20} = C_{23}$	-1741(3)	C_{13} C_{14} N_{3} C_{11}	23(3)
$C_{20} = C_{21} = C_{20} = C_{23}$	0.5(6)	$C_{15} = C_{14} = N_3 = C_{11}$	2.5(3)
$C_{24} = C_{25} = C_{20} = C_{21}$	-771(4)	C_{13} C_{14} N_{3} C_{11}	1784(2)
$C_1 - C_2 - C_2^2 - C_3^2$	101 1 (4)	C_{15} C_{16} N_{4} C_{19}	-1789(3)
C_{3}^{-} C_{2}^{-} C_{2	97 <i>4</i> (<i>4</i>)	C_{17} C_{16} N_{4} C_{19}	-0.6(3)
$C_1 - C_2 - C_2^2 - C_2^2$	-844(4)	C_{15} C_{16} N_{4} C_{11}	27(5)
$C_{1}^{32} = C_{27}^{32} = C_{28}^{32} = C_{29}^{32}$	-0.4(5)	C_{17} C_{16} N_{4} C_{11}	-1790(2)
$C_{2}^{2} = C_{2}^{27} = C_{2}^{28} = C_{2}^{29}$	-175.0(3)	C_{20} C_{19} N_{4} C_{16}	-177.8(3)
$C_{2}^{27} - C_{28}^{28} - C_{29}^{29} - C_{30}^{30}$	-0.3(6)	C_{18} C_{19} N_{4} C_{16}	0.7(3)
$C_{28} = C_{29} = C_{30} = C_{31}$	14(6)	C_{20} C_{19} N_{4} C_{11}	0.7(5)
$C_{20} = C_{20} = C_{30} = C_{31} = C_{32}$	-1.8(6)	C_{18} C_{19} N_{4} C_{11}	179 1 (2)
$C_{23} = C_{31} = C_{32} = C_{31}$	0.0(5)	C_{16} N4 $-C_{11}$ N1	179.1(2) 176.7(3)
$C_2 = C_2 = C_3 $	1747(3)	C19—N4— $Cu1$ —N1	-14(3)
C_{30} $-C_{31}$ $-C_{32}$ $-C_{27}$	11(6)	C16-N4-Cu1-N3	-42(3)
$C_2 = C_3 = C_{33} = C_{38}$	104 3 (4)	C19—N4— $Cu1$ —N3	1777(3)
C4-C3-C33-C38	-78 0 (5)	C6-N2-Cu1-N1	-13(3)
$C^2 - C^3 - C^{33} - C^{34}$	-71 4 (4)	C9-N2-Cu1-N1	-1773(3)
C_{4} C_{3} C_{3} C_{3} C_{3}	106 3 (4)	C_{6} N2 Cu1 N1	179 7 (3)
0. 05 055 051		CC 112 Cul 113	· · · · · (3)

1—N3 1—N4	3.6 (3)
1—N4	170 1 (2)
	-1/8.1(2)
1—N4	0.8 (2)
1—N2	2.2 (2)
1—N2	-178.9 (2)
u1—N4	178.2 (2)
u1—N4	2.8 (3)
u1—N2	-2.2 (2)
u1—N2	-177.6 (3)
270—C13	59.0 (4)
C70—C13	-63.6 (4)
270—Cl4	-67.2 (4)
270—Cl4	170.3 (2)
	1N4 1N4 1N2 1N2 1N4 1N2 1

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C70—H70…N1 ⁱ	0.98	2.46	3.430 (5)	170
C58—H58···Cl1 ⁱ	0.93	2.91	3.728 (5)	148
C66—H66…C18 ⁱ	0.93	2.83	3.755 (4)	172
C67—H67···Cl4	0.93	2.93	3.424 (4)	115
C34—H34···C6 ⁱⁱ	0.93	2.90	3.790 (5)	161
C35—H35···C11 ⁱⁱ	0.93	2.89	3.821 (5)	175
C41—H41···C19 ⁱⁱ	0.93	2.89	3.725 (5)	149
Symmetry codes: (i) $-x+2$, $y-1/2$, $-z+3/2$; (ii) $-x+1$, $-y+1$, $-z+1$.				

